If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+21x^2=34^2
We move all terms to the left:
9x^2+21x^2-(34^2)=0
We add all the numbers together, and all the variables
30x^2-1156=0
a = 30; b = 0; c = -1156;
Δ = b2-4ac
Δ = 02-4·30·(-1156)
Δ = 138720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{138720}=\sqrt{4624*30}=\sqrt{4624}*\sqrt{30}=68\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-68\sqrt{30}}{2*30}=\frac{0-68\sqrt{30}}{60} =-\frac{68\sqrt{30}}{60} =-\frac{17\sqrt{30}}{15} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+68\sqrt{30}}{2*30}=\frac{0+68\sqrt{30}}{60} =\frac{68\sqrt{30}}{60} =\frac{17\sqrt{30}}{15} $
| 4(-5v-7)=-188 | | 2x+3÷x+4=2 | | x=12/13 | | (x*x)+(x*9/21)^2=34^2 | | -2x-14+5=-6x-14-1 | | 9^(x)=3^(x)+6 | | 4x+10+4=6x+10-10 | | 3x+1+7=6x+1+6 | | 2-3t^2=0 | | 2x2-x-3=-x+5 | | (x+5)(x-4)=30 | | x2-3=-x+3 | | -2(1+7a)-2a=-130 | | x-0=2x-3 | | Z^2-3z+7=0 | | 4(w-1)=7w+20 | | 6x-3(8x-4)=138 | | n+10=14-(4-n) | | n+10=14-(4-n) | | 1y+10=2y+7 | | 3(x2-1)=4x-9 | | (3x+4)(2x-1)+4=0 | | 7a+2=9a^2 | | 21+2(-x-3)+4=-3x+3(x-2) | | 3p+3/14=6/7 | | 5a+5-3a=-7 | | 1/10x^2-13x+3=0 | | 2x+3=7x-6x | | 2x2=4-6= | | 0.1x^2-13x+3=0 | | 4x-7+4(2+x)=3x+10-5x | | (2x+2)=(x+1) |